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Hydrodynamic stability in plane Poiseuille flow 
with finite amplitude disturbances 
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(Received 23 February 1971 and in revised form 6 July 1971) 

A general method for studying two-dimensional problems in hydrodynamic 
stability is presented and applied to the classical problem of predicting in- 
stability in plane Poiseuille flow. The disturbance stream function is expanded 
in a Fourier series in the axial space dimension which, on substitution into the 
Navier-Stokes equation, leads to a system of parabolic partial differential equa- 
tions in the coefficient functions. An efficient, stable and accurate numerical 
method is presented for solving these equations. It is demonstrated that the 
numerical process is capable of accurate reproduction of known results from the 
linear theory of hydrodynamic stability. 

Disturbances that are stable according to linear theory are shown to become 
unstable with the addition of finite amplitude effects. This seems to be the first 
work of quantitative value for disturbances of moderate and larger amplitudes. 
A relationship between critical amplitude and Reynolds number is reported, the 
form of which indicates the existence of an absolute critical Reynolds number 
below which an arbitrary disturbance cannot be made unstable, no matter how 
large its initial amplitude. The critical curve shows significantly less effect of 
amplitude than do those obtained by earlier workers. 

1. Introduction 
The prediction of instability in parallel flows is one of the most interesting 

problems in fluid mechanics. The very extensive literature has been reviewed 
elsewhere (George 1970) and several monographs are available on the subject 
(Lin 1955; Eckhaus 1965; Betchov & Criminale 1967). Most of the earlier work 
has, of course, employed the classical two-dimensional linear theory. The linear 
theory yields a critical Reynolds number for plane Poiseuille flow which differs 
significantly from the experimentally observed values although it is of the right 
order of magnitude. 

It is generally acknowledged that the earliest stages of transition are closely 
related to the growth of laminar instabilities. If a disturbance in a fluid motion 
is initially small its growth or decay is determined by linear theory. However, if 
the disturbance grows, at  some stage of development of the process the nonlinear 
terms become important; and may subsequently dominate the entire process. 
On the other hand, if the initial disturbance is large enough, the process may be 
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nonlinear from the beginning. Thus the question of infinitesimal versus finite 
disturbances is a significant one. The ability to study the development of laminar 
instabilities far into the nonlinear phases of the motion would be a valuable tool, 
which could be directed toward the goal of achieving understanding of incipient 
turbulent phenomena. It was our objective to develop such a tool and apply it 
to the classical problems of predicting instability in plane Poiseuille flow and in 
Poiseuille flow. The method in a general form applicable both to plane Poiseuille 
flow and to Poiseuille flow will be presented and discussed in $9 3-6 below and 
results for plane Poiseuille flow will be presented in $5 7 and 8. The results for 
Poiseuille flow will be presented in a subsequent publication. 

There are several earlier papers on nonlinear effects in plane Poiseuille flow 
and these will be discussed below. For Poiseuille flow there has been no nonlinear 
prior work other than that of Dixon & Hellums (1967)) which may be regarded 
as a qualitative study preliminary to  the present work, and a recent paper by 
Davey & Nguyen (1971). 

2. Preliminary considerations 
The major obstacle in attacking the general problem by means of direct 

numerical integration of the equations of motion is that of dimensionality. Con- 
sider some of the problems associated with numerical integration of timewise 
periodic disturbances propagating downstream in an infinite channel. The flow 
field must in general be lengthy because instabilities of interest are typically 
associated with large Reynolds numbers. There is also the question of what 
boundary conditions to use a t  the downstream end of the flow field. Ideally, a 
disturbance should always propagate into a region of undisturbed flow but 
boundary conditions corresponding to this situation are difficult to impose. A 
further difficulty arises from the fact that any numerical process from which a 
quantitatively acceptable solution is to be achieved must be capable of accurate 
approximation of the eigenfunctions of the linear problem and their derivatives 
up to fourth order. These eigeiifunctions vary rapidly in magnitude over certain 
portions of the channel, necessitating fine resolution of any computing grid in 
the direction perpendicular to the basic flow. Such considerations led us to restrict 
this work to  the investigation of disturbances that are periodic in space. Virtually 
all earlier work in hydrodynamic stability has employed solutions constrained 
to be periodic in either the axial space variable or in time. 

The stream function is expanded in a Fourier series containing unknown co- 
efficients that depend upon position in the lateral channel direction and upon 
time. This series is inserted into the Navier-Stokes equations expressed in terms 
of a disturbance stream function, whereupon the collected coefficients of sine 
and cosine terms of the respective frequencies are separately set to zero. Asystem 
of coupled nonlinear partial differential equations for the unknown harmonic 
components is obtained. Integration of these equations using finite-difference 
techniques yields the desired solutions, whose growth or decay in time provides 
evidence of stability of the basic flow. 
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3. Mathematical formulation 
In  the case of plane Poiseuille flow we consider flow of a homogeneous incom- 

pressible viscous fluid in the region between two infinite stationary parallel 
plates. The two-dimensional fluid motion can be specified by a stream function 
$(x,, y, t )  defined such that 

u = a$py,  v = -aglax. ('1 
In  dimensionless form, the function satisfies the vorticity transport equation 

Non-dimensionalization is based on 1, the channel half-width, and on U,, velocity 
of the undisturbed laminar flow at the channel centre-line. The Reynolds number 
is R = (U,Z)jv. 

To study the behaviour of a disturbance superimposed on the steady flow 

(4) 
$(y) we substitute 

into (2) to obtain an equation for $: 

(5) 

- 

9% Y, t )  = ivy )  + 9@> Y, t )  

R-l(Lx + tVJ - tt - GC, + Gyar $, = 9, tx - 9, & ?  

in which [ = $,, + $yy and U = 1 - y2. All terms resulting from the substitution 
are retained. The equations are not linearized or otherwise simplified. Substitu- 
tion of the finite Fourier expansion 

into the stream function disturbance equation (5) leads to a system of coupled 
partial differential equations for the unknown coefficients A,(y, t )  and B,(y, t), 
m = 0,1 ,  ..., M. 

Equations that apply to flow in a cylindrical tube can readily be derived by 
performing manipulations analogous to those given above. The harmonic com- 
ponent disturbance equations for the two basic geometries can be combined 
conveniently into a single generalized formulation. Expressed in differential 
operator notation this generalization can be written as 

a 
- g,[A,] = R-'-Yf[A,] - Gma2nt[B,] + (1 - 7) WZEZ,, B, + F$ 
at 

a 
at 

for m = 0 , 1 , 2  ,..., I l l ,  (7)  

- 9,[Bn,] = R-19k[B,] + Gma9,[A,] - (1 - 7) maG,, A ,  + Fg 

for m = 1 , 2  ,..., M ,  (8) 

F i  = - +e&, Fg = - &xOP,B, (9) 

44 
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0 for plane Poiseuille flow, 
7 = {  1 for Poiseuille flow. 

I n  plane Poiseuille flow the conditions that the velocities vanish on the  boundaries 
may be expressed in terms of the harmonic components as indicated below: 

1 Am( 1) = 8Am( k l) /ay = 0, 
Bm( Ifi 1) = aB,( * 1)py = 0. 

Note that the only unstable eigenfunctions that exist according to linear theory 
are those that are even functions of y with respect to stream function. For this 
reason we will concentrate on nonlinear problems in which the fundamental 
fluctuation is an even function. Of course the solutions are not constrained to 
be even. It can be shown that an initially even function for A,  will remain even 
for all time, the nonlinear interactions being completely consistent with this 
assertion. The equations also dictate that alternate harmonics are of opposite 
parity. Thus we can reduce the required computer time by a factor of two by 
solving the problem over only half the channel using the following centre-line 
boundary condition : 

(21) 1 Arn(0) = A;(o) = o for m even, 
Ak(0) = A$(()) = 0 form odd. 

Since the initial condition on A ,  is even, all the odd harmonics, A,, A,, . . . , will be 
even functions; the even harmonics, A,, A,, . . . , will be odd functions. 

For Poiseuille flow it is not possible to argue that the various harmonics are 
odd or even. The conditions are that the velocity vanish a t  the boundary and 
that we have symmetry and a bounded solution at the centre-line. The boundary 
conditions imply constant mass flow. 
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4. Numerical approximation and solution 
For computational purposes it is convenient to express (7) and (8) directly in 

terms of the derivatives of A ,  and B,. This is accomplished by substitution of 
the differential operator ( 1  G )  into (7) and (8). Upon simplification this yields 

ya A% + y3 A; + Y ~ A ;  + y ~ : ,  + ?,A, + A, aA,/at + A, aAg/at 

y 4 ~ g  + y3 B; + y 2  B; + 7, B:, + 7, B, + A, aB,/at + A, aBk/at 

+ A, aA&/at + aD, + TB, = F;, ( 2 2 )  

+ A, aB;/at - aC, - rA, = Fg,  ( 2 3 )  

I where C, = A; - A,A; - (ma)2 A,, 
D, = BL-h lB~- (ma)2B, .  ( 2 4 )  

The primes denote differentiation with respect t o  y (r for Poiseuille flow). 

Define yi = R-'f{, ( 2 5 )  

then f 4  = 1, f 3  = -? l (2 /Y) ,  9 2  = -2(ma)2+7(3/y2) 
71 = -3f2/Y, f o  = (ma)4, 

All = (ma)2, A, = r / y ,  A, = -1, 
v = - Z m a ,  ~ = ( l - - ) ; l l ~ ~ m a ,  U = l - y 2 ,  

0 for plane Poiseuille flow, 
1 for Poiseuille flow. 

Equations (22 )  and ( 2 3 )  were discretized using Crank-Nicolson differencing 
in time. That is, knowing A ,  and B, at the nth time step, to advance t o  the 
(n  + 1)th step we take all terms other than the time derivatives to be the average 
of the values at the two time levels. The Crank-Nicolson approach is charac- 
terized by a small time truncation error and is known to be numerically stable 
in simpler problems for which the theory of numerical stability is well developed. 
Fourth-order space differencing was employed, so we expect an overall truncation 
error of order { ( A Y ) ~  + (At),}. 

We define the difference operators 

S t Q j  = [Qi.n+l)- Q$n)]/At, 
8, Q j  = [Qj-z - 8Qj--l+ 8Qj+l- Qj+zI/12/h, 
S'Q. 1 / 3  = [-Qj-2+ 16Qj-1-  3 O Q j  + 1 G Q j + 1 -  Qj+21/12h2, 
S3 Y 3  Q .  = [ - Q j - 2  + 2Qj-1- 2Qj+,+ Qj+21/2h3, 

] ( 2 7 )  

8: Q j  = [Qj-2 - 4Qi-, + G Q j  - 4Qj+l + Qj+J/h4, 

where h = Ay. The difference operators 8, and Si have error terms of order h4, 
whereas the error terms for 8; and 8; are of order h2. Since fourth-order difference 
expressions for third and fourth derivatives involve seven grid points it would 
be necessary to solve a set of linear algebraic equations having hepta-diagonal 
matrix forms. Hepta-diagonal systems require 50 % more computing time to 
solve than penta-diagonal systems. For this reason we decided to use lower order 
implicit approximations for high derivatives. However, we were able to raise 
the overall accuracy to h4 by including error terms for the high derivatives. The 

44-2 
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error terms are evaluated explicitly and included in the right-hand side of the 
resulting linear algebraic equations. In  other words the error terms are evaluated 
at  the 'nth' or known time level and hence cause no complication in the algebraic 
procedure. These error terms are actually the first neglected non-vanishing terms 
from the Taylor expansions. They involve the difference approximations to the 
fifth and sixth derivatives of the dependent variables. The error terms remain 
small throughout the solution and do not vary greatly with time. Hence, little 
or no accuracy is lost in treating them explicitly rather than implicitly. This 
method of improving accuracy with no additional computation seems to be novel 
and it is a very important feature of the method. With this correction it will be 
shown below that far fewer subdivisions are required to achieve any specified 
level of accuracy. Complete details of the procedure and results are available 
(George 1970). 

We are now in a position to write down the Cranl-Nicolson difference equation 
corresponding to equation (22) for A,,,. The notation refers t o  the kth 
iterate of the mth harmonic A, evaluated at thejth grid point (or spatial position 
y = jh) at the time level t = (n + 1) At. Define the averaging operator 

The difference equations for the Am,) are then 

4 2 

i = O  i = O  
C yicj) d [ S i  A:&")] + C hiG,6,6; Ak&+') 

where Eiv m = -&h2Az, E: = -4h2A;. (30) 

Direct substitution and subsequent algebraic manipulations lead to a set of 
nonlinear algebraic equations. These equations and an analogous set for the 
B,,) are solved by iteration with respect to the nonlinear coupling terms. This 
task is accomplished by considering the set of finite-difference equations in cyclic 
order. For each individual equation the nonlinear terms are explicitly evaluated 
using the latest available updated values of the dependent variables. These terms 
are then added t o  the already known iteration invariant parts of the right-hand 
side. Finally, the resultant set of linear algebraic equations are solved for new 
values of either A,,) or B,,). The process is repeated until certain convergence 
criteria, defined later, are satisfied. The iteration process is feasible because 
changes in the nonlinear terms corresponding to fairly large values of time in- 
crement are small to moderate in magnitude, so that the computation can proceed 
at a reasonably rapid pace with little penalty regarding the number of iterations 
required for convergence. 

Numerical experimentation was carried out to explore the possibility of letting 
the nonlinear terms lag one time step or even updating them only on the first 
few iterations, but we experienced inferior performance with respect to stability 
and accuracy. The motivation was, of course, to reduce the computational re- 
quirements since a large portion of time is spent evaluating the nonlinear terms, 
particularly when a large number of harmonics were retained. 



and solving, in order, the equations 

LA = F, (35)  

ux = A. (36 )  

Because of their triangular nature, the solution of (35 )  and (36)  is easy; solution 
of (35)  takes place in the order of increasing j, while solution of (36 )  is performed 
in order of decreasing j. The factorization phase requires 8N arithmetic opera- 
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tions and need only be done once since matrix A is independent of time. The 
forward and back substitution phases each require 4 N  operations and must be 
accomplished for each iteration for each harmonic in ascending sequence. 

The iteration criterion used was 

A similar condition on was required simultaneously. The condition corre- 
sponds roughly to a requirement that all of the quantities AZ$) and R!E$f) have 
changed by no more than one digit in the sixth significant figure during the 
preceding iteration. 

5. Comparison of computational methods 
Recently, two other expansion methods for solving spatially periodic hydro- 

dynamic stability problems have been reported in the literature. We thought it 
worthwhile to compare the computational effort required of these methods with 
that of the method used in this investigation. 

Dowell (1969) proposed to discretize only the lateral space variable by means 
of a Galerkin procedure, leaving the time variable continuous. The solution was 
expanded into a subset of a larger class of functions which satisfied the boundary 
conditions and which constituted a complete but non-orthogonal set. The un- 
known expansion coefficients were determined so that the linear combination 
minimized a measure of error with respect to satisfaction of the equations, which 
led to a complicated system of ordinary differential equations. The work required 
to solve these equations was large since the nonlinear terms were represented by 
four-fold summation terms which had to be evaluated at least twice per time 
step. For comparative purposes we took as a convenient and most reasonable 
basis the case involving a mean flow and three fluctuating harmonics with forty 
expansion modes. Dowell reported that, typically, forty modes were required 
for convergence of the series for solution of the linear problem. 

Pekeris & Shkoller ( 1 9 6 9 ~ )  studied periodic disturbances of finite amplitude 
by expanding the stream function into a series of eigenfunctions and adjoint 
eigenfunctions of the associated linear problem. Again a system of ordinary 
differential equations is obtained and once more a large amount of work is in- 
volved. First, one must compute the first twenty-one eigenfunctions and adjoint 
eigenfunctions for each of three harmonics. This is in itself a task of major 
proportions which must be repeated for each wavenumber, Reynolds number 
combination, and for each geometrical situation. Next, all of the interaction 
coefficients, complex integral functions of the eigenfunctions and adjoint eigen- 
functions must be obtained. This constitutes a second major computational task 
since over 200 000 complex coefficients are involved. Finally, 123 simultaneous 
ordinary differential equations must be integrated forward in time. 

The finite-difference method of solution proposed in this paper requires far 
less computational effort and far less storage than the two methods just described. 
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The main reason is that no expansions are made in the lateral spatial dimension. 
These lateral expansions yield very large numbers of nonlinear interaction terms. 
The comparison shown below (table 1) does not include computation of indices, 
fetch and storage of elements of arrays, or various other book-keeping functions. 
However, the estimates for all three methods are made on the  same basis using 
the number of terms in each series recommended by the authors. 

Memory requirement 
Operations/step x in words x 

Dowel1 100.0 
Pekeris & Shkoller 6.23 
This work 0.164 

TABLE 1 

16.4 
0.4 
0.005 

The results presented here do not imply that the Galerkin approach to problems 
of this type is without promise. In  fact, we believe the Galerkin approach is 
highly promising if basis functions with less total support are selected. 

6. Computational aspects 
All calculations were carried out on the Burroughs B-5500 computer which is 

characterized by a 48 bit word, 4 ps memory access time and 2 ps fixed-point add 
time. Solutions to linear problems were obtained at a rate of 0.7 s per time step 
or, equivalently, 86 steps per minute. 

Nonlinear problems for which two fluctuating harmonics were retained re- 
quired about 4-4.5 s per time step depending on the number of iterations needed 
for convergence. Usually four or five iterations were sufficient but more were 
taken in a few situations in which the solution was rapidly changing relative to 
the size of the time increment. A dimensionless time increment of 0.3 was used 
for all problems except for very high amplitude cases in which the larger size of 
the second harmonic made it necessary to reduce the time increment. Computa- 
tional runs were usually made to a time of 100 although in several cases times of 
200 to 230 were used. Most nonlinear runs required from 45 min t o  1 h to complete. 
The use of more harmonics increased the computer time since each additional 
harmonic involves two additional partial differential equations and additional 
nonlinear terms in all equations. Also, the higher harmonics possess shorter 
periods necessitating use of smaller time increments. Use of four harmonics, for 
example, required about five times as much computer time as a two-harmonic 
problem. Here nine equations were involved as opposed to five. Also, the time 
step must be halved since the period of the fourth harmonic is half that of the 
second harmonic. Studies indicated that a t  least twenty steps per cycle are 
needed to  maintain numerical stability. 

To put the computer time requirement into proper perspective it must be 
pointed out that the computer used in this work is relatively slow. Large com- 
puters of recent design operate about two orders of magnitude faster than the 
B-5500. 
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7. Linear studies 
We have demonstrated the validity of the method by solving a large number 

of problems involving small disturbances, using a wide variety of combinations 
of wavenumber and Reynolds number. The results have been compared with 
analogous results obtained by previous workers. I n  the process, we also have 
studied the effect of space and time increment sizes on accuracy and stability 
of the numerical solutions. 

Wall 

Distance, y 

FIGURE 1. Initial stream function and velocity fluctuations for K - 4  = 1. 

Initial conditions consisted of a fundamental disturbance having the shape of 
the first symmetric eigenfunction of a closely related problem, Chandrasekhar 
(1961). This function,f(y), has a shape somewhat similar to the real part of the 
least stable eigenfunction arising from linear theory. The stream function and 
velocity fluctuations corresponding to f ( y )  are shown in figure 1.  The initial 
conditions used were A , ( ~ ,  0 )  = K ,  f(y),  

A,(y,O) = 0 for m + 1, 

B,(y, 0 )  = 0 for all m, 

where K ,  is the specified initial amplitude. 
For problems that are solely linear only A,(y, t )  and B,(y, t )  are involved, there 

being no interaction between the fundamental fluctuation and itself, the mean 
flow or higher harmonics. Solutions to the Orr-Sommerfeld equations are often 
expressed in the form @(x, y, t )  = $(y) eia(z+ct). 
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We have written our solutions in the form 

$(x, y, t )  = A (y, t )  cos ax + B ( y ,  t )  sin ax. 

The correspondence between the two forms is such that 

A(y, t )  = ($,, cos ctc,t - $<rsinac,t) eacit, 
B ( y , t )  = - ( ~ i ~ ~ ~ a c , t + $ , s i n c t c , t ) e " c ~ t .  

697 

The linear solutions are sinusoidal with period 27r/(ac,) and growth or decay 
rate ear@. The complex eigenvalue G has been obtained by various workers as a 
function of a and R. Therefore we have a means of comparing computed solutions 
with earlier work. As an example, in figure 2 we show the oscillation computed 

0 

Dimensionlcss timc 

FIGURE 2. Computed linear oscillation (a = 1 ,  R = 10000). A(0, t )  = exp (tit) cos (c , t )  with 
ci = 0.003758, C, = 0.2374. 

for ct = 1, R = 10 000. Following the initial transient, a pure sine wave is obtained 
which is characterized by period and growth rate parameters that are in exact 
agreement with previous work. We found also that the corresponding eigen- 
function extracted from our results agrees well with the results of Thomas (1953). 
The maximum deviation is about 2 yo and this occurs very near the wall, where 
the eigenfunction itself is very small. At the centre-line the error is about 0.004 %. 

The effect of varying the grid size is shown in figure 3. Clearly, the quality of 
the results deteriorates as the number of intervals decreases until the method 
fails completely. The enhancing of solution quality is dramatic when steps are 
taken to  achieve fourth-order accuracy, as discussed previously. This simple 
device provides a very important contribution to the efficiency of the method. 
We note that more than 200 intervals are required to achieve the same accuracy 
using second-order methods as can be achieved with only 50 intervals using the 
fourth-order method. It is important to note that the more accurate solutions 
are obtained with little or no increase in computing time. 

A number of linear problems were solved holding the space increment fixed 
at 0.02 and varying the time step. It was determined that period and growth rate 
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were not affected to four or five significant figures by increasing the step size by 
a factor of two, four or eight. The number of iterations required for convergence 
did, however, increase significantly, doubling and even trebling until finally no 
solution at  all could be obtained. We found that a time step corresponding to 
about 20 intervals for each cycle in time of the solution was optimum. For non- 
linear problems this criterion was applied to  the highest harmonic in choosing 
an appropriate step size. 

Orr-Sommerfeld eigenvalues were computed for a variety of problems with 
Reynolds numbers ranging up to 100000. We invariably obtained values that 
were within the accuracy to which we could determine known linear results from 
the literature. The complete success that we had in verifying linear theory over 
a wide range of a-R combinations gave us confidence in the numerical procedure 
which was then applied to nonlinear problems. 

0 

2 
x 4  

, 

-4 I I 

FIGURE 3. The effect of channel resolution on the accuracy of linear 
solutions (a = 1, R = 10000). 

8. Nonlinear studies 
The behaviour of finite amplitude disturbances was for the most part studied 

using the mean flow and two harmonics. The fundamental or first harmonic 
(A,) alone was initially non-zero. This harmonic interacts with itself to create 
an associated Reynolds stress which excites both the zeroth and second har- 
monics thus inducing a distortion of the mean flow. Subsequent interactions of 
the harmonics may cause instability to occur a t  Reynolds numbers lower than 
the critical value predicted by linear theory. The solutions shown in figure 4 
illustrate such an occurrence. The oscillation, which represents the stream func- 
tion disturbance as shown in figure 1 with an initial amplitude K,  of 0.10, is 
characterized by rapid and sustained growth after an initial transient. Also shown 
is the bounding envelope of maxima and minima of the oscillating disturbance 
for the equivalent linear problem. The parameters used correspond to a point 
in the a, R plane near the apex of the neutral curve but just inside the stable or 
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subcritical region. We thus observe that finite amplitude instability does indeed 
exist for a situation where flow is stable according to linear theory. A similar 
calculation was made in which a linearly unstable flow (a  = 1, R = 7000) was 
shown to become even more unstable with the addition of nonlinearity. The 
growth rate exponent, ci = 7.93 x is almost four times that of the linear 
problem (2-0 x and is in fact larger than the maximum possible linear value 
of 7-65 x 10-3. 

N '"E 
z x  

- 1 0  L 

FIGURE 4. Illustration of the effect of nonlinear terms on stability (a = 1) .  

We show in figure 5 curves representing solutions for a sequence of Reynolds 
numbers ranging through the neutral curve, all obtained using unit wave- 
number and 0.10 initial amplitude. To simplify the interpretation the amplitude 
of the fluctuation is presented rather than the complete wave. The critical 
Reynolds number is reduced from 5815 to about 4125. Similar reductions will 
be associated with each wavenumber and amplitude. The disturbance shape also 
presumably has an effect. Another interpretation would be to associate a critical 
equilibrium amplitude with each point in the subcritical portion of the a, R plane. 

Analogous sets of solution curves to those given in figure 5 were generated for 
a variety of initial amplitudes ranging from 0.02 to 0.30. Careful interpretation 
of these curves allowed construction of a curve relating Reynolds number to 
critical amplitude but valid only for disturbances having an imposed fundamental 
wavelength of 277 (a  = 1). Nonlinear neutral Reynolds numbers were found by 
obtaining some measure of late-time slope for each solution as a function of R 
and interpolating to zero growth rate. Repetition of the pr0ces.s for the sequence 
of initial amplitudes led to figure 6, which shows 6he effect of amplitude on neutral 
Reynolds numbers. The most striking characteristic of the curve is the existence 
of an absolute minimum Reynolds number below which the flow cannot be 
rendered unstable-no matter how large the initial amplitude. Also notable is 
the fact that nonlinear growth is limited to amplitudes slightly in excess of 0.20. 
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Hence, the portion of Che curve to the right of the minimum represents equili- 
brium amplitudes. Amplitudes higher than those on this portion of the curve 
decay, while amplitudes lower than those on this portion of the curve grow, 
provided the Reynolds number is higher than the minimum. 

An experimentally determined critical Reynolds number for reverse transition, 
that is, the smallest Reynolds number for which fully developed turbulent flow 
can be maintained in a two-dimensional channel, has been shown to be about 
2100 by several workers. This figure is consistent with the results of our com- 
putations which yield a value of about 3500, obtained for a single disturbance. 

------7 

0.001 
0 30 60 90 120 150 180 210 

Dimensionless time 

FIGURE 5. The effect of Reynolds number on nonlinear solutions (a = 1, K A  = 0.10). 

It would be desirable to construct curves of critical Reynolds number versus 
amplitude for many values of cc and various disturbance shapes. The outer locus 
of points on such curves would yield a critical Reynolds number-amplitude 
relationship closely akin to the experimental situation in which a variety of 
disturbances are present. The minimum of the envelope of these curves would be 
lower than the Reynolds number of 3500 found for a = 1 and would presumably 
be close to the experimentally observed range. 

A comparison of our critical curve with those obtained by earlier workers 
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(adjusted to correspond to our basis of amplitude specification and Reynolds 
number) is given in figure 7. The comparison is restricted to lower amplitudes 
than the previous figure since previous work is not expected to be valid a t  higher 
amplitudes. A much less drastic effect of amplitude is indicated by our results 
than those obtained by methods valid only for small amplitude. Pekeris’s two 
relations (Pekeris & Shkoller 1969 a, b )  were presented in companion papers and 
are inexplicably at variance with one another. The lower curve of the two seems 
to be less reliable. It is from the work discussed previously. In  comparisons with 
Pekeris’s work it should be noted that KA is twice the amplitude parameter A, used 
by Pekeris. It is interesting and rather surprising to note that the first nonlinear 

transition 
zone 

0 0.05 0.10 0.15 0.20 ( 

Disturbance critical amplitude (stream function) 

FIGURE 6. Critical behaviour for finite amplitude disturbances (a  = 1) .  

work (Meksyn & Stuart 1951) gave the best estimate of the effect of amplitude 
until the present work. However, at  the time of that first work the starting point, 
the linear theory, was not in agreement with the currently accepted value. 

Most runs were made using two harmonics but several studies were made on 
the effect of higher harmonics. The magnitude of the second harmonic always 
increases with time from zero to an early maximum and then decreases. The func- 
tion may ultimately increase in the unstable cases but the decrease is continuous 
for stable situations. The absolute maximum is a well-defined function of ampli- 
tude and does not seem to depend significantly on Reynolds number, at  least in 
the neighbourhood of the neutral curve. For KA = 0.02, the maximum magnitude 
of the second harmonic is always two orders of magnitude less than the h s t  
harmonic. The overall trend is shown in figure 8. Even for the largest amplitude, 
0.3, the second harmonic is bounded by0.029, or less than 10% of the initial ampli- 
tude. Hence, it appears that two harmonics give adequate accuracy. The runs 
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using four harmonics seemed to be slightly more stable than the corresponding 
two harmonic cases. For example, with K,  = 0.20 and R = 3500 the results were 
similar to the results obtained with the same KA for R = 3000 and two harmonics. 

It should be emphasized that the effect of adding the third and fourth har- 
monics was slight even for high amplitudes. For the case mentioned above, 
K ,  = 0.20, the second, third and fourth harmonic amplitudes were always less 
than 0.017,0*003 and 0.0015 respectively. The fundamental harmonic amplitude 

6 

5 969h, a = 1) 
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Amplitude, K A  

FIGURE 7. Comparison of critical curve with earlier work. 

Initial amplitude ( K A  x loa) 

FIGURE 8. The effect of initial amplitude on the maximum magnitude of 
the second harmonic. 
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of course started at 0-20 in terms of the stream function or 0.3 in terms of velocity. 
That is to say, the initial velocity deviated from the parabolic initial profile by 
0.3 of the maximum velocity. Therefore, even for this very large disturbance 
the higher harmonics seem to be negligible although, of course, this simple 
observation of magnitude of the harmonics is not conclusive proof. For smaller 
initial disturbances, the higher harmonics are a much smaller fraction of the 
fundamental harmonic as indicated above. 

In the unstable cases the velocity profile apparently tends t o  develop a reversal 
in curvature. Consider the unstable case of K A  = 0.20 and R = 4000 at a time 
of t = 147. At this stage of development A,  has developed from a zero initial 
value to a maximum magnitude of 0.0080 and the mean velocity deviates from 
the undisturbed profile by a maximum of 0.033. The second derivative of the 
mean velocity profile ranges from - 3.44 at r = 0.68 to 3.88 at r = 0.92, with a 
change in sign at r = 0.86. Initially the second derivative of the mean velocity 
profile is - 2 at all positions. 

9. Conclusion 
We have developed a practical and efficient numerical method for obtaining 

solutions to the equations of motion pertaining to two-dimensional disturbances 
superimposed on laminar flow. The numerical process was shown to be stable and 
accurate when applied to problems of linear plane Poiseuille flow. Orr-Sommerfeld 
eigenvalues were computed to a high enough degree of accuracy to be considered 
exact, using only fifty channel subdivisions. 

The nonlinear results for problems in plane Poiseuille flow confirm that 
certain flows that are stable according to linear theory become unstable to 
finite amplitude disturbances. The curve relating Reynolds number to critical 
amplitude indicates the existence of an absolute critical Reynolds number below 
which the disturbance cannot be made unstable, no matter how large its initial 
amplitude. This curve also exhibits the behaviour characteristic of equilibrium 
amplitudes. Our computed critical curve shows significantly less effect of ampli- 
tude than do those obtained by earlier workers using perturbation and other 
asymptotic methods. 

The various perturbation and other asymptotic methods used in hydrodynamic 
stability studies tax the ability of the most able workers and often yield results 
which are difficult to interpret. Hence there have been numerous failures and 
disagreements among the various workers in the field even for the relatively 
simple linear case. The method presented here seems to be the first for which there 
is a satisfactory error estimate and satisfactory efficiency for nonlinear problems 
of moderate to large amplitudes. Work of the type presented here should be 
useful in resolving issues concerning the validity of the various approximation 
methods, as well as in providing basic information on stability and the early 
stages of turbulence. 

This work was supported by a grant from the Chevron Research Company and 
by National Institutes of Health Grant HE 09251-06. 
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